
Formal verification of side-channel attacks

Gilles Barthe
MPI-SP & IMDEA Software Institute

November 12, 2019



Motivation

Ï Cryptographic algorithms are provably secure
Ï But many cryptographic libraries are broken

implementation bugs
bad randomness
side-channels
. . .



Formal verification of side-channels

Ï Writing secure implementations is notoriously hard
Ï Empirical evaluations are useful but insufficient
Ï Difficult to interpret theoretical approaches

Objective:

(automated) formal guarantees for real implementations

Case studies:
Ï Cache-based timing attacks
Ï Differential power analysis

Commonalities:
Ï modelling approach
Ï (relational) program verification
Ï non-trivial interactions with provable security



Modelling

Ï Precise modelling of CPU is not desirable
Ï We need good trade-offs between accuracy and tractability

model is too simple =⇒ missed attacks
model is too complex =⇒ verification unfeasible

Standard warnings:

models are constructed =⇒ attacks outside the model
proof fails 6=⇒ practical attack

Formal models should match practitioners’s view:
Ï Likely to yield tractable models
Ï Do not roll your own models

Ideally, formal models can be validated



Constant-time cryptography

Ï Control flow does not depend on secrets
if H then s1 else s2

Ï Memory accesses do not depend on secrets
a[H]

(array is public)

Why care?
Ï Best practice against cache attacks
Ï Non-constant-time implementations are often easily broken
Ï No panacea: execution time of instruction may depend on

operands, does not account for micro-architectural attacks



Sanity check: language-level vs system-level

Language-level security
Constant-time is a (non-standard) information flow policy:
leakage does not depend on secrets

System-level security
Constant-time program is protected against adversary
Ï executing on same virtualized platform
Ï controlling the cache
Ï controlling the scheduler
Ï under all realistic replacement policies

(Mechanized) proof based on idealized model of virtualization:
no branch prediction, no interrupt



Formalizing constant-time security

Observational non-interference
Ï Define leakage model
Ï Show that leakage is independent of secret

Executions (with different secrets) have equal leakage

Variant with public outputs



Verifying constant-time security

Ï Build product program

if e then s else s ′ ; assert e1 = e2; if e1 then p else p′

Ï Check
m1 =Lm2 =⇒ p,m1]m2 6⇓ ⊥

Ï Flexible, compatible with off-the-shelf verifiers
Ï Sound and relatively complete
Ï Extensively evaluated



Enforcing constant-time security

Ï Start from information flow secure program
no high loop
no secret dependent memory access

Ï Eliminate high conditionals, early termination, etc.
Ï Flexible, allows programmers to write readable code
Ï Seriously evaluated



Constant-time security: challenges

Ï Post-quantum cryptography
Ï Secure compilation
Ï Constant-time security under speculative execution



Constant-time and post-quantum cryptography

b← tt;
while b do r $←µ;y ← f (x ,r);b←P(y)
return y

Ï Challenges: control-flow, non-uniform distributions
Ï One approach (for control-flow): leak guards
Ï But: security proof must be strengthened
Ï Another approach: use an alternative algorithm (GALACTICS)



Preservation of software-based countermeasures

Does my optimization preserve constant-time?

Ï Some optimizations break constant-time
Ï However many optimizations don’t

Techniques and case studies:
Ï CT-simulations (and simplifications)
Ï Jasmin (on paper) and CompCert (in Coq)



CT simulations

a

α

b

β

≈ ≈
a

α

b

β

a′

α′

b′

β ′≈ ≈
≈ ≈

t

t

τ

τ

Ï Each target step is related to a source step (simulation proof)
Ï Prove that target leakages are equal for every two instances of

the simulation diagram with equal source leakage
Ï Therefore source-level CT implies target-level CT
Ï Three variants: lockstep, one to several, one to any

(number of steps must be explicit and uniform)



Simpler approaches

Ï Preserving, erasing or renaming leakage
Ï Case study: CompCert

Compiler pass Uses
Cshmgen Leakage pres. Type elaboration, simpl. of control
Cminorgen Memory inj. Stack allocation
Selection Leakage erasing Sel. of operators and addr. modes
RTLgen Leakage pres. Generation of CFG and 3-address code
Inlining Leakage transf. Function inlining

ConstProp Leakage transf. Constant propagation
CSE Leakage erasing Common subexpression elimination

Deadcode Leakage erasing Redundancy elimination
Allocation Leakage erasing Register allocation
Tunneling Leakage erasing Branch tunneling
Linearize CT-simulation Linearization of CFG
Stacking Memory inj. Laying out stack frames
Asmgen Leakage transf. Emission of assembly code



Power analysis

Recover secrets from measuring power consumption
Ï SPA: single trace
Ï DPA: multiple traces

Serious threat for embedded systems



Masked implementations

Ï Values x encoded as probabilistic t+1-tuples (x0 . . .xt) s.t.
x0, . . . ,xt are i.i.d. w.r.t. to uniform distribution
x = x0+ ...+xt

Ï Operations operate on probabilistic values:
linear operations: apply the function to each share
non-linear operations: harder

Function SecMult(a,b)
ab0,0 ← a0 ·b0;ab0,1 ← a0 ·b1;ab0,2 ← a0 ·b2;
ab1,0 ← a1 ·b0;ab1,1 ← a1 ·b1;ab1,2 ← a1 ·b2;
ab2,0 ← a2 ·b0;ab2,1 ← a2 ·b1;ab2,2 ← a2 ·b2;
r0,1 $← F256;r0,2 $← F256;r1,2 $← F256
r1,0 ← (r0,1 +ab0,1)+ab1,0
r2,0 ← (r0,2 +ab0,2)+ab2,0
r2,1 ← (r1,2 +ab1,2)+ab2,1
c0 ← (ab0,0 + r0,1)+ r0,2
c1 ← (ab1,1 + r1,0)+ r1,2
c2 ← (ab2,2 + r2,0)+ r2,1
return (c0 ,c1 ,c2)



Probing security, formally

Program c is secure at order t iff
Ï every set of observations of size ≤ t can be simulated with at

most ≤ t shares from each input;
Ï the joint distribution for a set of observations of size ≤ t is

independent from secrets

Relation to information flow
Ï Independence from secrets ≈ non-interference
Ï Opportunity to leverage programming language techniques

Validating the security model:
Ï equivalence with noisy leakage model
Ï experimentally



Challenges

Verification:
Ï Independence from secrets
Ï Combinatorial explosion

First-order masking:
100 observation sets for a program of 100 lines
Second-order masking:
4,950 observation sets for a program of 100 lines
Fourth-order masking:
3,921,225 observation sets for a program of 100 lines

Moreover, size of programs grows quadratically with order
Ï Composition

Optimization
Ï Randomness complexity
Ï Parallelization
Ï etc



Checking independence from a secret s

Sets of observations is modelled by tuple e of expressions
Ï Rule 1: If e does not use s then it is independent
Ï Rule 2: If e can be written as C [f ⊕ r ] and r does not occur in

C and f then it is sufficient to test the independence of C [r ]

Ï Rule 3: Apply decision procedure, or compute distribution

Benefits
Ï easy to automate
Ï extends to large sets
Ï works on individual gadgets up to small orders



Composition

Constraint:
t0+ t1+ t2+ t3 É t

A0
t0

observations

A1
t1

observations
A2

t2
observations

A3
t3

observations



Strong non-interference

Ï distinguish between output and internal variables
Ï show that any set of t intermediate variables with

- t1 on internal variables
- t2 = t− t1 on the outputs

can be simulated with at most t1 shares of each input



Secure Composition

Constraint:
t0+t1+t2+t3+tr É t

A0
t0

observations

A1
t1

observations
A2

t2
observations

A3
t3

observations

tr
internal ob-
servations



Tools

MaskVerif
Ï Check probabilistic non-interference for large sets
Ï Probing security, NI, SNI, glitches
Ï Synthesis of refreshing gadgets

MaskComp
Ï Type-based information flow analysis
Ï Automated insertion of refresh gadgets
Ï Generate code at arbitrary orders
Ï Reasonably efficient at small orders



Execution times

Algorithm unmasked Order 1 Order 2 Order 3
AES 0.078s 2.697s 3.326s 4.516s

Keccak 0.238s 1.572s 3.057s 5.801s
Simon 0.053s 0.279s 0.526s 0.873s
Speck 0.022s 4.361s 10.281s 20.053s

Algorithm Order 5 Order 10 Order 15 Order 20
AES 8.161s 21.318s 38.007s 59.567s

Keccak 13.505s 42.764s 92.476s 156.050s
Simon 1.782s 6.136s 11.551s 20.140s
Speck 47.389s 231.423s 357.153s 603.261s



Masking: challenges

Ï More security models
Ï More composition results
Ï Secure compilation
Ï Post-quantum cryptography



Beyond side-channel verification

Ï High-speed cryptography
low-level optimizations
partially written in assembly
no formal guarantees (mostly)

Ï High-assurance cryptography
functional verification (mainly)
side-channel (sometimes)
cryptographic strength (maybe)
written in C-like languages

compiler is in the TCB
reasonably efficient, but no match for high-speed crypto

Goal: high-assurance and high-speed cryptographic libraries
Fast and verified assembly implementations



A holistic approach

Ï Algorithm is provably secure
Ï Reference implementation is safe and functionally correct
Ï Optimized implementation is functionally equivalent to

reference implementation and (co-)safe
Ï Optimized implementation is leakage-free

Optimized implementation is functionally correct and provable
secure against implementation-level adversary

A recent case study: SHA3
Ï reference and vectorized assembly implementation of SHA3
Ï functionally equivalent and correct
Ï indifferentiable from RO



EasyCrypt

Domain-specific proof assistant for
Ï tailored to relational and game-hopping proofs
Ï control and automation from state-of-art verification

interactive proof engine and mathematical libraries
(a la Coq/ssreflect)
back-end to SMT solvers

Many case studies:
Ï Encryption, signatures, key exchange, zero-knowledge,

multi-party and verifiable computation, SHA3, voting, KMS
Ï Private Statistics, Smart Sum, Vertex Cover, Sparse Vector
Ï SGD, Glauber dynamics, population dynamics, card shufflings



Jasmin

Ï “Assembly in the head”: mix of high-level constructs (variable
names, global parameters, loops, functions) and low-level
instructions and intrinsics

Ï Predictable and formally verified compiler
Ï Verification-friendly: safety, constant-time, functional

correctness and equivalence checking (via EasyCrypt back-end)

Directions
Ï Support for other platforms
Ï Cautiously enrich language



Conclusions

Ï Practical tools for (specific) side-channels
Ï Interesting interactions with provable security
Ï “Practical” tools for correctness and provable security
Ï The future is fast and verified!


